教材:严版数据结构

页码:P191-192

实现:算法7.16(解析:图7.37)

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include<stdio.h>
#include<iostream>
#include<stdlib.h>
#include<limits.h>
#include<iomanip>

using namespace std;

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define INFINITY 32767 //最大值
#define MAX_VERTEX_NUM 20 //最大顶点个数
typedef int Status;
typedef int VRType;
typedef int InfoType;
typedef bool*** PathMatrix;


//{有向图,有向网,无向图,无向网}
typedef enum { DG, DN, UDG, UDN }GraphKind;

typedef struct ArcCell {
VRType adj;//VRType是顶点关系类型。对无权图,用1或0
//表示相邻否;对带权图,则为权值类型
InfoType *info;//该弧相关信息的指针
}ArcCell, AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];

typedef ArcCell** DistancMatrix;
typedef char VertexType;
typedef struct {
VertexType vexs[MAX_VERTEX_NUM];//顶点向量
AdjMatrix arcs;//邻接矩阵
int vexnum, arcnum;//图的当前顶点数和弧数
GraphKind kind;//图的种类标志
}MGraph;




//在G中找到v对应的顶点位置
int LocateVex(MGraph G, char v)
{
int i;
for (i = 0; i < G.vexnum; i++)
{
if (G.vexs[i] == v)
{
return i;
}
}
return -1;
}



Status CreateDN(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量

//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = INFINITY;
G.arcs[i][j].info = NULL;
if (i == j)
{
G.arcs[i][j].adj = 0;
}
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj和权值w(int):" << endl;
//输入一条边依附的顶点及权值
cin >> v1;
cin >> v2;
cin >> w;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = w;//弧<v1,v2>的权值
}
return OK;
}

void list(MGraph G)
{
int i, j;
cout << "输出邻接矩阵:" << endl;
for (i = 0; i < G.vexnum; ++i)
{
cout << G.vexs[i] << "----";
for (j = 0; j < G.vexnum; ++j)
{
if (G.arcs[i][j].adj == INFINITY)
cout << setw(4) << "∞";
else
cout << setw(4) << G.arcs[i][j].adj;
}
cout << endl;
}
}

void ShortestPath_FLOYD(MGraph G,PathMatrix &P, DistancMatrix &D)
{
int i, j, v, w,u;
P = (bool ***)malloc(sizeof(bool *)*G.vexnum);
for (i = 0; i < G.vexnum; i++)
P[i] = (bool **)malloc(sizeof(bool)*G.vexnum);
for (i = 0; i < G.vexnum; i++)
for(j=0;j<G.vexnum;++j)
P[i][j] = (bool *)malloc(sizeof(bool)*G.vexnum);

D = (ArcCell **)malloc(sizeof(ArcCell)*G.vexnum);
for (i = 0; i < G.vexnum; ++i)
{
D[i]= (ArcCell *)malloc(sizeof(ArcCell)*G.vexnum);
}

//各对结点之间初始已知路径及距离
for (v = 0; v < G.vexnum; ++v)
{
for (w = 0; w < G.vexnum; ++w)
{
D[v][w] = G.arcs[v][w];
for (u = 0; u < G.vexnum; ++u)
{
P[v][w][u] = FALSE;
}
//从v到w有直接路径
if (D[v][w].adj < INFINITY&&D[v][w].adj!=0)
{
P[v][w][v] = TRUE;
P[v][w][w] = TRUE;
}//if
}//for
}

for (u = 0; u < G.vexnum; ++u)
{
for (v = 0; v < G.vexnum; ++v)
{
for (w = 0; w < G.vexnum; ++w)
{
//从v经u到w的一条路径更短
if (D[v][u].adj + D[u][w].adj < D[v][w].adj)
{
D[v][w].adj = D[v][u].adj + D[u][w].adj;
for (i = 0; i < G.vexnum; ++i)
{
P[v][w][i] = P[v][u][i] || P[u][w][i];
}
}//if
}
}
}

cout << "输出每一对顶点之间的最短路径长度如下:" << endl;
for (v = 0; v < G.vexnum; ++v)
{
cout << G.vexs[v] << "----";
for (w = 0; w < G.vexnum; ++w)
{
if (D[v][w].adj == INFINITY)
printf("%4s", "∞");
else
printf("%4d", D[v][w].adj);
}
cout << endl;
}



}

void main()
{
MGraph G;
int v0;
PathMatrix P;
DistancMatrix D;
CreateDN(G);
list(G);
ShortestPath_FLOYD(G, P, D);
cout << endl;
system("pause");
}