1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
| #include<stdio.h> #include<iostream> #include<stdlib.h> #include<limits.h> #include<iomanip> using namespace std; #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define INFINITY 32767 #define MAX_VERTEX_NUM 20 typedef int Status; typedef int VRType; typedef int InfoType; typedef bool*** PathMatrix;
typedef enum { DG, DN, UDG, UDN }GraphKind; typedef struct ArcCell { VRType adj; InfoType *info; }ArcCell, AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef ArcCell** DistancMatrix; typedef char VertexType; typedef struct { VertexType vexs[MAX_VERTEX_NUM]; AdjMatrix arcs; int vexnum, arcnum; GraphKind kind; }MGraph;
int LocateVex(MGraph G, char v) { int i; for (i = 0; i < G.vexnum; i++) { if (G.vexs[i] == v) { return i; } } return -1; } Status CreateDN(MGraph &G) { int i, j, k, w; VertexType v1, v2; cout << "输入顶点数G.vexnum:"; cin >> G.vexnum; cout << "输入边数G.arcnum:"; cin >> G.arcnum; getchar(); for (i = 0; i < G.vexnum; i++) { cout << "输入顶点G.vexs[" << i << "]" << endl; cin >> G.vexs[i]; getchar(); } for (i = 0; i < G.vexnum; i++) { for (j = 0; j < G.vexnum; j++) { G.arcs[i][j].adj = INFINITY; G.arcs[i][j].info = NULL; if (i == j) { G.arcs[i][j].adj = 0; } } } for (k = 0; k < G.arcnum; ++k) { cout << "输入第" << k + 1 << "条边vi、vj和权值w(int):" << endl; cin >> v1; cin >> v2; cin >> w; getchar(); i = LocateVex(G, v1); j = LocateVex(G, v2); G.arcs[i][j].adj = w; } return OK; } void list(MGraph G) { int i, j; cout << "输出邻接矩阵:" << endl; for (i = 0; i < G.vexnum; ++i) { cout << G.vexs[i] << "----"; for (j = 0; j < G.vexnum; ++j) { if (G.arcs[i][j].adj == INFINITY) cout << setw(4) << "∞"; else cout << setw(4) << G.arcs[i][j].adj; } cout << endl; } } void ShortestPath_FLOYD(MGraph G,PathMatrix &P, DistancMatrix &D) { int i, j, v, w,u; P = (bool ***)malloc(sizeof(bool *)*G.vexnum); for (i = 0; i < G.vexnum; i++) P[i] = (bool **)malloc(sizeof(bool)*G.vexnum); for (i = 0; i < G.vexnum; i++) for(j=0;j<G.vexnum;++j) P[i][j] = (bool *)malloc(sizeof(bool)*G.vexnum); D = (ArcCell **)malloc(sizeof(ArcCell)*G.vexnum); for (i = 0; i < G.vexnum; ++i) { D[i]= (ArcCell *)malloc(sizeof(ArcCell)*G.vexnum); } for (v = 0; v < G.vexnum; ++v) { for (w = 0; w < G.vexnum; ++w) { D[v][w] = G.arcs[v][w]; for (u = 0; u < G.vexnum; ++u) { P[v][w][u] = FALSE; } if (D[v][w].adj < INFINITY&&D[v][w].adj!=0) { P[v][w][v] = TRUE; P[v][w][w] = TRUE; } } } for (u = 0; u < G.vexnum; ++u) { for (v = 0; v < G.vexnum; ++v) { for (w = 0; w < G.vexnum; ++w) { if (D[v][u].adj + D[u][w].adj < D[v][w].adj) { D[v][w].adj = D[v][u].adj + D[u][w].adj; for (i = 0; i < G.vexnum; ++i) { P[v][w][i] = P[v][u][i] || P[u][w][i]; } } } } } cout << "输出每一对顶点之间的最短路径长度如下:" << endl; for (v = 0; v < G.vexnum; ++v) { cout << G.vexs[v] << "----"; for (w = 0; w < G.vexnum; ++w) { if (D[v][w].adj == INFINITY) printf("%4s", "∞"); else printf("%4d", D[v][w].adj); } cout << endl; } } void main() { MGraph G; int v0; PathMatrix P; DistancMatrix D; CreateDN(G); list(G); ShortestPath_FLOYD(G, P, D); cout << endl; system("pause"); }
|