教材:严版数据结构

页码:P162

算法: 7.1-7.2

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#include<stdio.h>
#include<iostream>
#include<stdlib.h>
#include<limits.h>
#include<iomanip>

using namespace std;

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define INFINITY INT_MAX //最大值
#define MAX_VERTEX_NUM 20 //最大顶点个数
typedef int Status;
typedef int VRType;
typedef int InfoType;
//{有向图,有向网,无向图,无向网}
typedef enum{DG,DN,UDG,UDN}GraphKind;

typedef struct ArcCell {
VRType adj;//VRType是顶点关系类型。对无权图,用1或0
//表示相邻否;对带权图,则为权值类型
InfoType *info;//该弧相关信息的指针
}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];

typedef char VertexType;
typedef struct {
VertexType vexs[MAX_VERTEX_NUM];//顶点向量
AdjMatrix arcs;//邻接矩阵
int vexnum, arcnum;//图的当前顶点数和弧数
GraphKind kind;//图的种类标志
}MGraph;

//在G中找到v对应的顶点位置
int LocateVex(MGraph G, char v)
{
int i;
for (i = 0; i < G.vexnum; i++)
{
if (G.vexs[i] == v)
{
return i;
}
}
return -1;
}

/*
算法7.2
采用数组(邻接矩阵)表示法,构造无向网G
*/
Status CreateUDN(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量

//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = INFINITY;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj和权值w(int):" << endl;
//输入一条边依附的顶点及权值
cin >> v1;
cin >> v2;
cin >> w;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = w;//弧<v1,v2>的权值
//置<v1,v2>的对称弧<v2,v1>
G.arcs[j][i].adj = G.arcs[i][j].adj;
}
return OK;
}

Status CreateDN(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量

//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = INFINITY;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj和权值w(int):" << endl;
//输入一条边依附的顶点及权值
cin >> v1;
cin >> v2;
cin >> w;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = w;//弧<v1,v2>的权值
}
return OK;
}
/*
有向图的构造
*/
Status CreateDG(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量

//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = 0;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj:" << endl;
cin >> v1;
cin >> v2;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = 1;//1代表可达,0代表不可达
}
return OK;
}
/*
无向图的构造
*/
Status CreateUDG(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量

//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = 0;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj:" << endl;
cin >> v1;
cin >> v2;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = 1;//1代表可达,0代表不可达
G.arcs[j][i].adj = G.arcs[i][j].adj;
}
return OK;
}
/*
算法7.1
采用数组(邻接矩阵)表示法,构造图G。
*/
Status CreateGraph(MGraph &G)
{
cout << "请输入图的种类:0表示DG,1表示DN,2表示UDG,3表示UDN" << endl;
int x;
cin >> x;
G.kind=(GraphKind)x;
switch (G.kind)
{
case DG:
return CreateDG(G);
case DN:
return CreateDN(G);
case UDG:
return CreateUDG(G);
case UDN:return CreateUDN(G);
default:return ERROR;
}
}

void list(MGraph G)
{
int i, j;
cout << "输出邻接矩阵:" << endl;
for (i = 0; i < G.vexnum; ++i)
{
cout << G.vexs[i] << "----";
for (j = 0; j < G.vexnum; ++j)
{
if (G.arcs[i][j].adj == INFINITY)
cout << setw(4) << "∞";
else
cout << setw(4) << G.arcs[i][j].adj;
}
cout << endl;
}
}

void main()
{
MGraph G;
int x=1;
while (x)
{
CreateGraph(G);
list(G);
cout << "是否继续(1、继续,0、退出)";
cin >> x;
cout << endl;
}
system("pause");
}