教材:严版数据结构 P227-231

实现:算法9.5-9.8

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include<stdio.h>
#include<stdlib.h>
#include<iostream>

using namespace std;

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define EQ(a,b) (a==b)
#define LT(a,b) (a<b)

typedef int Status;
typedef char TElemType;
typedef int KeyType;
typedef struct {
KeyType key;//关键字域
}ElemType;

typedef struct BiTNode {
ElemType data;
struct BiTNode *lchild, *rchild;//左右孩子指针
}BiTNode,*BiTree;

//插入
Status InsertBST(BiTree &T,ElemType e)
{
if (T == NULL)
{
T = (BiTNode *)malloc(sizeof(BiTNode));
T->lchild = T->rchild = NULL;
T->data = e;
return 1;
}
else
{
//关键字已存在于树中,插入失败,返回0
if (e.key == T->data.key)
return 0;
else if (e.key < T->data.key)
return InsertBST(T->lchild, e);
else
return InsertBST(T->rchild, e);
}
}
//前序遍历
void PreOrderTraverse(BiTree T)
{
if (T)
{
cout << T->data.key << " ";
if (T->lchild)
PreOrderTraverse(T->lchild);
if (T->rchild)
PreOrderTraverse(T->rchild);
}
}
//中序递归遍历
void InOrderTraverse(BiTree T)
{
if (T)
{

if (T->lchild)
InOrderTraverse(T->lchild);

cout << T->data.key << " ";

if (T->rchild)
InOrderTraverse(T->rchild);
}
}
//后序递归遍历
void PostOrderTraverse(BiTree T)
{
if (T)
{

if (T->lchild)
PostOrderTraverse(T->lchild);
if (T->rchild)
PostOrderTraverse(T->rchild);
cout << T->data.key<<" ";
}
}
//查找关键字
BiTree SearchBSTa(BiTree T, KeyType e)
{
if (T == NULL)
return NULL;
else
{
if (T->data.key == e)
return T;
else if (e < T->data.key)
return SearchBSTa(T->lchild, e);
else
return SearchBSTa(T->rchild, e);
}
}
//删除确定结点
Status Delete(BiTree &T)
{
BiTNode *p=new BiTNode();
//右子树为空
if (!T->rchild)
{
p = T;
T = T->lchild;
free(p);
}
//左子树为空
else if (!T->lchild)
{
p = T;
T = T->rchild;
free(p);
}
else//左右子树均不空
{
p = T;
BiTNode *s = new BiTNode();
s = T->lchild;
while (s->rchild)
{
T = s;
s = s->rchild;
}
T->data = s->data;
if (p != T)
p->rchild = s->lchild;
else
T->lchild = s->lchild;
delete s;
}
return TRUE;
}
//找到删除的结点
Status DeleteBST(BiTree &T, KeyType key)
{
if (!T)
return FALSE;
else
{
if (EQ(key, T->data.key))
return Delete(T);
else if (LT(key, T->data.key))
return DeleteBST(T->lchild, key);
else
return DeleteBST(T->rchild, key);
}
}//DeleteBST



void main()
{
BiTree T = NULL, s;
int n, i;
ElemType e;
cout << "输入二叉排序树的结点数:";
cin >> n;
cout << "输入" << n << "个结点的值:" << endl;
for (i = 1; i <= n; ++i)
{
cin >> e.key;
InsertBST(T, e);
}
cout << "先序遍历二叉排序树,结果是:" << endl;
PreOrderTraverse(T);
cout << endl;
cout << "中序遍历二叉排序树,结果是:" << endl;
InOrderTraverse(T);
cout << endl;
cout << "后序遍历二叉排序树,结果是:" << endl;
PostOrderTraverse(T);
cout << endl;
cout << "输入要查找结点的值:\n";
cin >> e.key;
s = SearchBSTa(T, e.key);
if (s)
{
printf("已找到!结点的八进制地址为:%o\n", s);
}
else
{
printf("没找到");
}
cout << "输入插入结点的值:";
cin >> e.key;
InsertBST(T, e);
cout << "先序遍历二叉排序树,结果是:" << endl;
PreOrderTraverse(T);
cout << endl;
cout << "中序遍历二叉排序树,结果是:" << endl;
InOrderTraverse(T);
cout << endl;
cout << "后序遍历二叉排序树,结果是:" << endl;
PostOrderTraverse(T);
cout << endl;

cout << "输入要删除结点的值:" << endl;
cin >> e.key;
DeleteBST(T, e.key);
cout << "先序遍历二叉排序树,结果是:" << endl;
PreOrderTraverse(T);
cout << endl;
cout << "中序遍历二叉排序树,结果是:" << endl;
InOrderTraverse(T);
cout << endl;
cout << "后序遍历二叉排序树,结果是:" << endl;
PostOrderTraverse(T);
cout << endl;
system("pause");
}